Extração de Características de Sinais para Diagnóstico de Doença Cardíaca Utilizando Uma Única Derivação de um Eletrocardiograma
Resumo
Texto completo:
DOI 10.29327/2405740.12.1-11Referências
AFSAR, F. A.; AKRAM, M. U.; ARIF, M.; KHURSHID, J. A Pruned Fuzzy k-Nearest Neighbor Classifier with Application to Electrocardiogram Based Cardiac Arrhythmia Recognition. Proceedings of the 12th IEEE International Multitopic Conference, December 23-24, 2008.
ALKHODARI, M.; FRAIWAN, L. Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings. ELSEVIER Computer Methods and Programs in Biomedicine. 2021.
ANURADHA, B.; REDDY, V. C. V. Cardiac Arrhythmia Classification Using Fuzzy Classifiers. Journal of Theoretical and Applied Information Technology. 2005 – 2008.
CHEN, Y. H.; YU, S. N. Comparison of Different Wavelet Subband Features in the Classification of ECG Beats Using Probabilistic Neural Network. EMBS Annual International Conference New York City, USA, Aug 30-Sept 3, 2006.
DALLY, W. J.; GRAY, C. T.; PAULTON, J.; KHAILANY, B.; WILSON, J.; DENNISON, L. Hardware-Enable Artificial Intelligence. IEEE Symposium on VLSI Circuits. 18-22 June 2018.
DI CESARE M.; BIXBY H., GAZIANO T.; HADEED L.; KABUDULA C.; MCGHIE D. V.; MWANGI J.; PERVAN B.; PEREL P.; PINEIRO D.; TAYLOR S.; PNTO F. World heart report 2023: Confronting the world’s number one killer. World Heart Federation, Geneva, Switzerland, 2023.
GUPTA C.; MITTAL M.; MITTAL V. Chaos Theory: Na Emerging Tool for Arrhythmia Detection. Sensing and Imaging, 2020.
GUPTA V.; MITTAL M.; MITTAL V.; GUPTA A. An eficiente AR modelling-based electrocardiogram signal analysis for health informatics. Int. J. Medical Engineering and Informatics. Vol. 14, No. 1, 2022.
HAMPTON J.; HAMPTON J. The ECG Made Easy. Ninth edition. Elsevier, 2019.
OPPENHEIM A. V.; WILLSKY A. S.; NAWAB W. S. H. Signals & Systems. Second Edition, Prentice Hass, August 1996.
INAN, O. T.; GIOVANGRNDI, L.; KOVACS, G. T. A. Robust Neural-Network-Based Classification of Premature Ventricular Contractions Using Wavelet Transform and Timing Interval Features. IEEE Transactions on Biomedical Engineering. V. 53, n. 12, 2006.
JAGER, F.; MOODY G. B.; TADDEI A.; and R. G. MARK G. Performance measures for algorithms to detect transient ischemic ST segment changes.In Computers in Cardiology. Los Alamitos, CA: IEEE Comput. Soc. Press. P. 369–372, 1991.
JAGER F.; MOODY G. B.; MARK R. G. Detection of transient ST segment episodes during ambulatory ECG monitoring. Comput Biomed Res. 31(5):305-22, 1998.
MAGLAVERAS, N.; STAMKOPOULOS T. et. Al. An adaptive backpropagation neural network for real-time ischemia episodes detection: development and performance analysis using the European ST-T database. IEEE Trans Biomed Eng.45(7):193-214, 1998.
OPPENHEIM, A. V.; WILLSKY, A. S., NAWAB, W. S. H. Signals & Systems. Prentice Hass. 2. Ed., 1996.
PATEL I.; SANDHYA A.; RAJA, V. S.; SARAVANAN S. Extraction of Features from ECG Signal. International Journal of Current Research and Review. Vol. 13, 2021.
Physionet PhysioBank MIT-BIH Arrhythmia Database. Disponível em: . Acessado em 04 de setembro de 2023.
RAHMAN, S.; PAL, S.; YEARWOOD, J.; KARMACAR, C. Robustness of Deep Learning models in electrocardiogram noise detection an classification. ELSEVIER Computer Methods and Programs in Biomedicine. 2024.
SEDRA, Adel S., SMITH, Kenneth, C., Microeletrônica. 4. Ed. – São Paulo: Makron Books, 2000.
SHARMA, L. D.; SUNKARIA, R. K. A robust QRS detection using novel pre-processing techniques and kurtosis based Enhanced dfficiency. Measurement – ELSEVIER. 2016.
SHEN, S.; CHEN, J.; WANG, W.; TSAI, D.; SHEN, L.; TSENG, C. A CNN-Based Human Head Detection Algorithm Implemented on Edge AI Chip. IEEE, International Conference on System Science and Engineering (ICSSE). 31 August 2020 – 03 September 2020.
ZHENG, H.; WU, J. Real-time QRS Detection Method. 10th IEEE Intl. Conf. on e-Health Networking. Applications and Service (HEALTHCOM 2008).
Apontamentos
- Não há apontamentos.
 
NÚCLEO DE PESQUISA INSTITUCIONAL 
CENTRO UNIVERSITÁRIO DE ITAJUBÁ - FEPI
Av. Dr. Antônio Braga Filho 687 - Varginha - Itajubá - CEP – 37501-002 
Tel.(35) 3629-8400
Revista Científic@ Universitas - ISSN Eletrônico: 2175-4020